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ABSTRACT: Lake-effect convective snowstorms frequently produce high-impact, hazardous winter weather conditions

downwind of the North American Great Lakes. During lake-effect snow events, the lake surfaces can cool rapidly, and in

some cases, notable development of ice cover occurs. Such rapid changes in the lake-surface conditions are not accounted

for in existing operational weather forecast models, such as the National Oceanic and Atmospheric Administration’s

(NOAA) High-Resolution Rapid Refresh (HRRR) model, resulting in reduced performance of lake-effect snow forecasts.

As amilestone to future implementations in theGreat LakesOperational Forecast System (GLOFS) andHRRR, this study

examines the one-way linkage between the hydrodynamic-icemodel [the Finite-VolumeCommunityOceanModel coupled

with the unstructured grid version of the Los Alamos Sea Ice Model (FVCOM-CICE), the physical core model of GLOFS]

and the atmosphericmodel [theWeather Research and Forecasting (WRF)Model, the physical coremodel of HRRR]. The

realistic representation of lake-surface cooling and ice development or its fractional coverage during three lake-effect snow

events was achieved by feeding the FVCOM-CICE simulated lake-surface conditions to WRF (using a regional configu-

ration of HRRR), resulting in the improved simulation of the turbulent heat fluxes over the lakes and resulting snow water

equivalent in the downwind areas. This study shows that the one-way coupling is a practical approach that is well suited to

the operational environment, as it requires little to no increase in computational resources yet can result in improved

forecasts of regional weather and lake conditions.

KEYWORDS: Inland seas/lakes; Lake effects; Boundary layer; Snowfall; Operational forecasting; Numerical weather

prediction/forecasting

1. Introduction
Severe winter weather events involving ice and snow kill

dozens of people every year around the Great Lakes region

and impact a wide range of socioeconomic activities, such as

commercial shipping, winter recreation, transportation, and

utilities (e.g., Lake Carriers’ Association 2019; Ayon 2017;

Niziol 1987). Accurate and timely forecasts of hazardous

winter weather are critical for safety and support mitigation

activities intended to reduce associated losses. However,

numerical weather and lake models require further refine-

ments in order to improve these forecasts (Prasad et al.

2010; Samenow 2019). In the Great Lakes region, hazardous

winter weather is often associated with cold air outbreaks

originating from the Arctic region. For example, lake-effect

snow (LES) bands and resulting snowfall are common me-

soscale convective weather phenomena in the Great Lakes

region during the late autumn and throughout the winter

(Cordeira and Laird 2008; Vavrus et al. 2013; Notaro et al.

2013). LES is primarily driven by the large vertical tem-

perature gradient imposed on the atmospheric surface layer

by forcing a cold air mass over a relatively warm lake sur-

face. The morphology of mesoscale lake-effect structures

was found to have distinct types, which are documented in

Kristovich et al. (2003). In any case, the induced fluxes of

moisture and heat from the lake surface provide buoyancy

to the air above the lake, ultimately producing cloud bands

and the potential for precipitation in the form of rain or

snowfall over the water and downwind landmass. These

fluxes of moisture and heat are sensitive to changes in lake

ice. Latent heat fluxes off the lake surface have been shown

to decrease relatively linearly with increases in ice coverage

while sensible heat fluxes are constant until about 70%

spatial ice coverage, after which sensible heat fluxes de-

crease rapidly (Gerbush et al. 2008).

It remains a challenge for numerical weather models to accu-

rately forecast the timing, location, and intensity of LES storms
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due to the complexity of the process. Prior numerical modeling

studies show that predictions of LES are notably influenced by

lake ice cover (Wright et al. 2013), mean lake temperature

(Hjelmfelt and Braham 1983; Theeuwes et al. 2010),

atmosphere–lake temperature differences (Laird et al. 2003),

lake surface temperature variations (Shi and Xue 2019), cloud

microphysics parameterizations (Theeuwes et al. 2010; Reeves

and Dawson 2013), and parameterizations of planetary and

surface boundary layers (Conrick et al. 2015;Minder et al. 2020).

These previous studies collectively indicate that the turbulent

heat fluxes (i.e., heat and moisture fluxes from the lakes) are

critical factors that need to be represented well in the models to

accurately simulate LES bands. Fujisaki-Manome et al. (2017)

showed that operational forecast models present high uncer-

tainty in turbulent sensible and latent heat fluxes over Lake Erie

(i.e., heat and moisture loss from the lake surface) for a record

LES event over Buffalo, New York, in November 2014. In at-

mospheric models, the uncertainty is partly caused by over-

simplified surface boundary conditions via the prescription of

temporally constant, satellite-based lake-surface temperatures

and ice cover over the forecast horizon.Having temporally static

lake-surface conditions from satellite analyses is the default

configuration in the vast majority of short-termweather forecast

model applications, such as the High-Resolution Rapid Refresh

(HRRR; Benjamin et al. 2016a,b), which runs hourly at the

National Oceanic and Atmospheric Administration (NOAA)

Centers for Environmental Prediction (NCEP). Reasonable

performance can be expected when lake-surface conditions are

relatively static. In the climatological seasonal cycle, this is likely

the case as the estimated climatological cooling rates of lake-

wide mean surface temperature during November–December

ranged for 0.58–1.58C week21 across the Great Lakes (Fichot

et al. 2019), providing a cooling rate of 0.078–0.218Cday21.

However, in episodic storm events in fall and early winter, the

lake surface can cool at a faster rate, especially in shallow lakes

where thermal inertia is relatively small. For example, based on

Fujisaki-Manome et al. (2017), the lake-wide mean surface

temperature in Lake Erie cooled down by 0.68–1.08Cday21

during the LES storm in November 2014. Cooling rates of the

lake surface temperature in the otherGreat Lakes in responding

to a storm event are not well documented. However, given that

the climatological cooling rates in fall and early winter were

estimated to be similar among the Great Lakes in contrast with

the large variation of the warming rates in spring and summer

(Fichot et al. 2019), Lake Erie may not be the only lake where a

rapid cooling of the lake surface occurs and where the static

lake-surface conditions are not appropriate. Another concern

with the lake-surface conditions currently used in weather

forecast models is that they are often based on satellite mea-

surements that could be out of date by several days due to

persistent cloud cover leading to erroneous results. Given that

the sensitivity was demonstrated previously in numerical simu-

lations of LES to changes in the lake–atmosphere temperature

differences on the order of a few degrees Celsius (Laird et al.

2003; Wright et al. 2013), it is important to account for the

temporal evolution of lake-surface conditions.

When LES occurs late in the season, lake ice introduces

further complexity into the system. Ice formation on the Great

Lakes occurs each year beginning in early December and lasts

until late spring (Assel et al. 2003; Wang et al. 2018). In addi-

tion to presenting obstacle for mariners and vessels navigating

the lakes, Great Lakes ice cover reduces the air–water transfer

of heat and moisture and modifies wind stresses altering LES-

band behavior (Cordeira and Laird 2008; Wright et al. 2013;

Vavrus et al. 2013). Therefore, when considering dynamic

evolution of lake-surface conditions during LES events, it is

critical to provide accurate representation of ice cover on

the lakes.

Currently, the first-ever short-term ice forecast for the

Great Lakes is being developed to be incorporated to the

existing NOAA’s Great Lakes Operational Forecast System

(GLOFS; Anderson et al. 2018). This forecast model is based

on a coupled ice–hydrodynamic model from the unstructured

grid version of the Los Alamos Sea Ice Model (UG-CICE;

Gao et al. 2011; Hunke et al. 2015) and the unstructured grid

Finite Volume Community Ocean Model (FVCOM; Chen

et al. 2006, 2013). The model is driven by prescribed surface

meteorology from HRRR forecasts. Given that both HRRR

and GLOFS provide operational NOAA forecasts, linking

these weather, ice, and hydrodynamic models is one way to

enable the modeling suite to exchange rapidly changing lake-

surface conditions during LES events; thereby improving

forecast accuracy.

The coupling of simplified parameterizations of lakes in

numerical weather predictions has been increasing due to the

reasonable performance and computational efficiency of these

parameterizations (Mironov et al. 2010), but a large portion of

the work has been focused on regional climate simulations with

one-dimensional lakemodels (Mallard et al. 2014). coupled the

Advanced Research version of the Weather Research and

Forecasting (WRF-ARW)Model (Skamarock et al. 2008) with

the one-dimensional hydrodynamic Freshwater Lake (FLake;

Mironov 2008) model to dynamically downscale climate sim-

ulations to allow for more explicit representation of the lakes

and lake ice within the modeling system during the winter

season. Their study used a 12-km horizontal resolution domain

over the Great Lakes and found better simulations of the onset

and spatial coverage of lake ice than when using a coarse

dataset to initialize the lakes. While investigating the use of the

one-dimensional lakemodel includedwithWRF (WRF-Lake),

Xiao et al. (2016) noted that the use of these simplified lake

models is limited due to the lack of horizontal mixing and ice

movement, both of which are important for larger lake sys-

tems. Xue et al. (2017) used a two-way coupling of a climate

model and FVCOM to show notable improvements over pre-

vious studies with simpler hydrodynamic components in terms

of lake thermal properties and ice for simulations on climate

time scales and mentions the importance of ice dynamics on

shorter time scales.

While two-way coupling of atmospheric and hydrodynamic

models has been shown to be successful for climate simula-

tions, exchanging state variables or fluxes between the weather

and ice-lake models at every time step is computationally ex-

pensive, especially for high-resolution models, such as HRRR

and GLOFS. Timeliness is required for operational forecast

models, and full model coupling would be too resource
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intensive for the operational environment. On the other

hand, coupling between the models via iterative one-way data

sharing potentially provides a practical solution by allowing

both the weather and ice-lake models to incorporate rapidly

changing surface conditions. In the one-way linkage, the at-

mospheric model ingests the temporally changing forecasted

lake-surface temperature and ice conditions (e.g., ice con-

centration, surface temperature) as the surface boundary

conditions, instead of the conventional static lake-surface

temperature from satellite-based analysis (sometimes out-

of-date by several days from late fall to winter due to

persistent cloud cover). In turn, the ice–hydrodynamic

model (GLOFS) will receive ‘‘better’’ surface meteorol-

ogy from the linked atmospheric model in the following

forecast cycles. Thus, the one-way linkage approach enables

loose iterative model coupling without increasing any com-

putational expense by leveraging the existing dissemina-

tion channels for HRRR from NOAA’s National Weather

Service (NWS) and for GLOFS from NOAA’s National

Ocean Service (NOS).

The goal of this study is to evaluate the benefits of the one-

way coupling between the atmospheric and ice–hydrodynamic

models in simulating LES storms, particularly in simulating

lake-surface conditions, turbulent heat fluxes over the

lakes, and snow water equivalent (SWE) downwind of the

lakes. We demonstrate that the one-way linkage between

the weather and ice-lake models provides a practical ap-

proach to improving hazardous winter weather forecasts

associated with LES events during periods of changing lake-

surface conditions, including rapid ice cover evolution.

Three case studies of LES events are presented along with

verification of the one-way linkage approach. Model results

are validated against available observations, including lake-

surface temperature, turbulent heat fluxes from the lake

surface, and SWE. The evidence provided in this study

highlights the importance of coordinated improvements

among different operational entities, such as NOS and

NWS to provide more accurate forecasts at a relatively low

computational cost.

In section 2, we describe the atmospheric and ice-lake

models used in our experiment, as well as the data used to

validate the model results. In section 3, we present the results

from the numerical experiment and discuss how the models

are improved by the one-way coupling and steps to further

improve forecast accuracy. In section 4, we summarize

the study.

2. Methods

a. Atmospheric model

The WRF-ARW Model (Skamarock et al. 2008), version

3.9.1 (hereafter WRF in this study), was used to simulate LES

events over the Great Lakes region. The WRF offers rigor-

ously tested numerical methods with capability for non-

hydrostatic applications. The WRF configuration (including

physics suite selection) was identical to the NOAA’s HRRR

(Benjamin et al. 2016a,b), whose applications cover the entire

contiguous United States and the Alaska region. However, our

application is to a restricted computational domain covering the

Great Lakes region (Fig. 1) with a 3-km horizontal grid and 51

vertical hybrid-sigma levels.Keyphysics parameterizations include

the Mellor–Yamada–Nakanishi–Niino (MYNN) (Nakanishi

and Niino 2004, 2009; Olson et al. 2019) planetary boundary

layer schemes, the aerosol-aware microphysics of Thompson

and Eidhammer (2014), and the Rapid Update Cycle (RUC)

land surface model (Smirnova et al. 2016). The model is con-

vection allowing and therefore no cumulus parameterization

was used which is consistent with previous research usingWRF

at this horizontal grid spacing for this application (e.g., Shi and

Xue 2019; Wright et al. 2013). Hourly updated Rapid Refresh

(Benjamin et al. 2016a) fields were used as initial and lat-

eral boundary conditions as currently applied in operations. A

one-dimensional lake model implemented in WRF (Oleson

et al. 2013) was used for smaller inland lakes. Over the Great

Lakes, the control lower boundary condition for the lake surface

(i.e., lake-surface temperature) was prescribed using satellite-

based observations based on the NOAA HIRES RTG 1/12th

degree SST dataset (https://polar.ncep.noaa.gov/sst/rtg_high_

res/, hereafter referred to as RTG) at the model initialization

and remains constant throughout the forecast period. For ice

cover, the daily sea ice analysis from the NCEP was used

(Grumbine 2014), which has 12.7-km horizontal resolution. Ice

cover at a model pixel was handled as a binary value, that is,

100% (full coverage) or 0% (open water). These are based on

the HRRR’s NOAA/NCEP operational version as of 2019. We

define this quasi-operational setup with the WRF for the Great

Lakes as the ‘‘control’’ case. In addition, we define the dynamic

case as an experimental simulation where ‘‘dynamic’’ lake-

surface conditions were provided by an ice–hydrodynamic

model, FVCOM-CICE, which is described in the following

section. In the dynamic case, the lake-surface conditions evolved

over the simulation period with temporarily changing lake-

surface temperature and fractional ice cover. Turbulent heat

fluxes are calculated as a weighted average of over-water and

over-ice values based on the areal fraction of ice provided by

the ice–hydrodynamic model, FVCOM-CICE. To confirm

the system convergence in the dynamic case, we conducted

multiple iterations of data exchange between the WRF and

FVCOM-CICE (see in the following section); the dynamic

case returned its surface meteorology to force FVCOM-CICE,

whose results were passed back to the WRF for the second it-

erative run. This process was repeated for three iterations, but

the results in the WRF and FVCOM-CICE were found to es-

sentially converge after the first iteration, which is further de-

tailed in section 3a.

The comparative study of the control and dynamic cases

enable evaluations of improvements that the HRRR could

merit by taking account of temporally evolving lake surface

conditions and fractional ice cover in its future operational

implementation. The simulations with theWRFwere made for

the durations of three selected LES events, which is listed in

Table 1 and further described in section 2c.

b. Ice–hydrodynamic model

The unstructured grid FVCOM (Chen et al. 2006, 2013) was

used to simulate the Great Lakes hydrodynamics. FVCOM is a
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three-dimensional, free-surface, primitive equation, sigma-

coordinate oceanographic model that solves the integral form

of the governing equations. FVCOM has been applied in sev-

eral studies of the coastal ocean, including successful applica-

tion to the Great Lakes (Anderson et al. 2010; Anderson and

Schwab 2012, 2013; Anderson et al. 2015; Bai et al. 2013; Xue

et al. 2015; and many others). In this work, the model was

configured separately for Lake Superior, Lake Erie, and Lake

Ontario, while Lake Michigan and Lake Huron, which are

connected by the Strait of Mackinac and form a single system,

are handled by the same model. Horizontal grid resolution

in each configured model ranged from roughly 200 m near

the shoreline to 2500 m offshore, with 21 vertical sigma

layers evenly distributed throughout the water column.

As a result, the numbers of triangular elements in the models

are roughly 20 000 for Lake Superior, 170 000 for Lake

TABLE 1. Lake-effect snow events focused on in the model study. The cooling values (8C) are from the satellite analysis (RTG), and the

values per day are shown in the parentheses. The gained ice coverage values (%) are from the NIC analysis. Both the cooling and gained

ice coverage are for the storm durations.

Event

name Duration Impacted area

Cooling of lake surface

temperature (8C)
Gained ice

coverage (%)

Nov 2014 0000UTC 17Nov–1800UTC 19Nov 2014 Downwind Lake Erie Superior: 0.45 (0.16) Ice-free

Michigan: 1.18 (0.43)

Huron: 1.32 (0.48)

Erie: 1.52 (0.55)

Ontario: 1.15 (0.42)

Dec 2017 1200 UTC 24Dec–0000 UTC 27Dec 2017 Downwind Lake Erie, Upper

Peninsula of Michigan

Superior: 0.80 (0.32) Superior: 3

Michigan: 1.25 (0.50) Michigan: 3

Huron: 0.95 (0.38) Huron: 9

Erie: 1.45 (0.58) Erie: 9

Ontario: 0.15 (0.06) Ontario: 1

Jan 2018 0000 UTC 3 Jan–0300 UTC 6 Jan 2018 Downwind Lake Michigan, Upper

Peninsula of Michigan

Superior: 1.05 (0.34) Superior: 3

Michigan: 0.77 (0.25) Michigan: 9

Huron: 0.57 (0.18) Huron: 6

Erie: 0.70 (0.22) Erie: 40

Ontario: 0.03 (0.01) Ontario: 9

FIG. 1. Horizontal extent of domain used for theWRF simulations depicted by the blue box.

Red dots represent flux-tower locations (ST: Stannard Rock, GI: Granite Island, WS: White

Shoal, SR: Spectacle Reef). Polygons shown in green are the downwind areas where the threat

score of snow water equivalent simulations was evaluated (S1: Erie, S2: Michigan, and S3:

Upper Peninsula).
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Michigan–Huron, 12 000 for Lake Erie, and 100 000 for Lake

Ontario. For the Lake Erie and Lake Michigan–Huron

models, these implementations of FVCOM are based on

the next-generation of NOAA’s GLOFS (Anderson et al.

2018), while they are experimental for the Lake Superior and

Lake Ontario models. Horizontal and vertical diffusion are

handled by the Smagorinsky parameterization (Smagorinsky

1963) andMellor–Yamada level-2.5 turbulence closure scheme

(Mellor and Yamada 1982; Mellor and Blumberg 2004), re-

spectively. The air–water drag coefficient was calculated as a

function of wind speed (Large and Pond 1981). Latent and

sensible heat fluxes were calculated from the Coupled Ocean–

Atmosphere Response Experiment (COARE; Fairall et al.

1996a,b, 2003) algorithm. Modeled depths were taken from

3-arc-second bathymetry data from the NOAANational Centers

for Environmental Information (NCEI; Fig. S1 in the online

supplemental material).

UG-CICE (Gao et al. 2011; Hunke et al. 2015) has been

included and coupled within FVCOM. The UG-CICE model

includes components for ice thermodynamics and ice dynam-

ics, using elastic-viscous-plastic rheology for internal stress

(Hunke and Dukowicz 1997), and produces two-dimensional

fields of ice concentration, thickness, and velocity. A multi-

category ice thickness distribution (ITD) model (Thorndike

et al. 1975) is employed in UG-CICE to represent the subgrid

scale distribution of ice thickness in response to mechanical

and thermal forcing. Hereafter, we call the coupled FVCOM

and UG-CICE system as FVCOM-CICE. In this study, five

categories of ice thickness were defined (5, 25, 65, 125, and

205 cm). The modeled ice surface albedo depends on surface

temperature and thickness of ice, as well as the visible and in-

frared spectral bands of the incoming solar radiation (Briegleb

1992). At ice-covered cells, the net momentum transfer was

calculated as a weighted average of the air–water and ice–water

stresses by areal fraction of ice. The air–ice drag coefficientCD_ai

was calculated as a function of wind speed U, given as CD_ai 5
(1.43 1 0.052U) 3 1023 and the ice–water drag coefficient is

5.5 3 1023. Similarly, the net heat transfer was calculated as a

weighted average of the air–water and ice–water heat fluxes. The

ice–water heat fluxes are calculated based on the bulk transfer

formula (Maykut and McPhee 1995).

The background FVCOM-CICE simulations were started at

least one year prior to each of the selected LES events

(Table 1) to obtain the realistic thermal structures. These

background simulations were forced by the hourly meteoro-

logical datasets from HRRR. Seasonal evolutions of water

temperature and ice coverage with similar FVCOM-CICE

setups were extensively verified in Anderson et al. (2018)

and Fujisaki-Manome et al. (2020). For the one-way coupling

experiments, the models started in the beginning of the LES

events using restart files from the background simulations. In

these experiments, the models were forced by the 15-min

meteorological datasets from WRF (section 2a). To assess

the impact of temporally evolving lake surface conditions in

WRF simulations, the lake-surface temperature was debiased

to match its lake-wide mean to RTG’s. For the iterative runs of

the one-way coupling mentioned in section 2a, FVCOM-CICE

was forced by the control case of WRF in the first iteration and

passed its resulting lake surface conditions to WRF for its first

iteration (i.e., the dynamic case). The second iteration of

FVCOM-CICE was forced by the dynamic case of WRF.

c. Lake-effect snow events
The three LES events presented (Table 1) were selected to

test the modeling framework in specific ways. The first two

cases (November 2014 and December 2017) were high-impact

events with large snowfall accumulations. The November 2014

event was a result of an anomalously cold-air outbreak early in

the unstable season, when the lake-surface forcing potential

was very high. Resultant lake-effect convection produced over

5 feet (;1.5m) of snowfall during an approximate 48-h period

across areas downwind of Lake Erie (NWS 2014). Based on the

satellite-based analysis from RTG, the daily cooling of the mean

lake surface temperatures (Table 1) well exceeded the climato-

logical upper bound (0.218Cday21 based on Fichot et al. 2019,

see section 1) in Lake Michigan (0.438Cday21), Lake Huron

(0.488Cday21), Lake Erie (0.558Cday21), and Lake Ontario

(0.428Cday21), but not in Lake Superior (0.168Cday21, Table 1).

The lakes were ice-free during this event. The December 2017

event produced a record 24-h snowfall at Erie International

Airport in Pennsylvania of over 30 in. (;0.75m), while also

dropping heavy snowfall over Michigan’s Upper Peninsula and

western New York (NWS 2017, 2018). The daily cooling of the

mean lake surface temperatures (Table 1) again well exceeded

the climatological upper bound in Lake Superior (0.328Cday21),

Lake Michigan (0.508Cday21), Lake Huron (0.388Cday21), and

LakeErie (0.588Cday21), but not in LakeOntario (0.068Cday21).

The lakes were largely ice free but in Lake Huron and Lake Erie,

ice coverage over each of the two lakes increased by 9%during the

storm duration (Table 1). These two events were characterized by

rapidly changing lake-surface temperatures and are well suited to

test the modeling framework’s ability to resolve and potentially

improve strongly forced, high-impact events using updated

lake-surface conditions. The final case study (January 2018)

occurred during the same cold-air outbreak as the December

2017 event. This event resulted in lake-effect snowfall

downwind of all the Great Lakes along with rapidly growing

ice coverage over the lakes. This event occurred after the fall

overturn and the cooling of lake-surface temperatures was

not as evident as the other two events. However, the daily

cooling of the mean lake surface temperatures (Table 1)

were still above or around the climatological upper bounds in

Lake Superior (0.348Cday21), Lake Michigan (0.258Cday21),

and Lake Erie (0.228Cday21). There were notable growths of

ice cover during the 3-day event, particularly in Lake Erie,

which gained 40% ice cover during the storm duration. This

case was well posed to test the modeling framework in rapidly

changing lake-surface conditions, which were not captured in

previous modeling configurations that use static lake-surface

conditions.

d. Data for model verification

1) SURFACE METEOROLOGY

Simulated wind speed and air temperature from the atmo-

sphericmodelwere comparedwith observations from theNational
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Data Buoy Center’s Coastal Marine Automated Network

(CMAN), whose data were obtained from the NOAA Great

Lakes CoastWatch website (https://coastwatch.glerl.noaa.gov/

marobs/). Modeled ice concentration and spatial distribution

simulated by FVCOM were compared to Great Lakes ice con-

centration data from the U.S. National Ice Center (NIC; https://

www.natice.noaa.gov/products/great_lakes.html). Through a bi-

national coordinated effort between the U.S. NIC and Canadian

Ice Center, routine gridded ice analysis products are pro-

duced from available data sources including RadarSat-2,

Envisat, the Advanced Very High Resolution Radiometer

(AVHRR), Geostationary Operational and Environmental

Satellites (GOES), and Moderate Resolution Imaging

Spectroradiometer (MODIS). To compare with a spatial pattern

of water surface temperature from the FVCOM simulations, the

Great Lakes Surface Environmental Analysis (GLSEA; Schwab

et al. 1999; https://coastwatch.glerl.noaa.gov/glsea/doc/)was used.

GLSEA provides daily water surface temperature for the

Great Lakes at ;1.3-km resolution from the composite

analysis of NOAA’s AVHRR imagery. Because a temporal

smoothing over610 days is applied to GLSEA, the product

is not ideal to look at short-term changes over a few days;

however, we took advantage of its high-resolution spatial

pattern by verifying the overall spatial pattern of the

FVCOM-simulated water surface temperature on the initial time

of each simulation. TheRTGdatasetwas used for the verification

of the changes in lake-wide mean water surface temperature

during the events.

2) TURBULENT HEAT FLUXES

Turbulent heat flux data from four offshore platforms

were used to compare with the simulated turbulent sensible

and latent heat fluxes (lE and H, respectively) by WRF.

The data were collected from offshore, lighthouse-based

monitoring platforms (Fig. 1): Stannard Rock (Lake Superior),

Granite Island (Lake Superior),White Shoal (LakeMichigan),

and Spectacle Reef (Lake Huron). These observations are

part of a broader collection of fixed and mobile-based

platforms collectively referred to as the Great Lakes

Evaporation Network (GLEN; Lenters et al. 2013; Spence

et al. 2011; Blanken et al. 2011). Some of these installations

are referred by NDBC as stations STDM4, WSLM4, and

SRLM4 at Stannard Rock, White Shoal, and Spectacle

Reef, respectively. All eddy covariance systems followed

conventional protocols for calculating turbulent fluxes,

such as those established in the Great Slave Lake (Northwest

Territories, Canada) by Blanken et al. (2000). Mean turbulent

fluxes over 30-min increments were provided for latent and

sensible heat.

3) SNOW WATER EQUIVALENT

The Snow Data Assimilation System (SNODAS) is a

modeling and data assimilation system developed by the

NOAA/NWS’s National Operational Hydrologic Remote

Sensing Center (NOHRSC) to provide the best possible

estimates of snow cover and associated variables as gridded

data to support hydrologic modeling and analysis (Barrett

2003). Here, the data were considered as an observational

analysis to compare with simulated SWE from the atmo-

spheric model. The domain covers the contiguous United

States, and the data are provided daily with a 1-km hori-

zontal resolution.

e. Skill assessment
To assess the modeled lake-surface conditions, turbulent

heat fluxes, and snow water equivalent, a few metrics are in-

troduced. First, changes in lake-surface conditions (i.e., lake-

surface temperature, ice coverage) during an LES event (DX)

were calculated as

DX5X
t5tend

2X
t5tstart

, (1)

where Xt5tend and Xt5tstart are values of lake-wide mean water

surface temperature or ice coverage at the end and start times

of an LES event, respectively.

Second, the root-mean-square error (RMSE) was used to

evaluate the modeled surface meteorology and the turbulent

heat fluxes:

RMSE5

"
1

N
�
N

i51
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m
2 x

o
)2
#1/2

, (2)

where N is the number of data points and xm and xo are

modeled and observed values, respectively.

Third, to evaluate a modeled spatial pattern of snow water

equivalent, the mean absolute error (MAE) difference was

used. The MAE difference, noted as DMAE, was calculated as

DMAE5 jSWEd
m 2 SWE

o
j2 jSWEc

m 2SWE
o
j , (3)

where SWEd
m and SWEc

m are modeled snow water equivalent

in the dynamic and control cases, respectively. SWEo is the

snow water equivalent from SNODAS. Given that the sign of

bias (i.e., jSWEc,d
m 2 SWEoj) rarely changed in the control and

dynamic cases (as detailed in section 3c), negative DMAE in-

dicates improvement in the dynamic case against the control

case (due to reduction in MAE) and positive DMAE indicates

degradation (due to increase in MAE).

Last, to quantify the model’s skill in simulating SWE, the

threat score (TS) was used. TS is often used when evaluating a

model’s categorical forecast skill such as to capture observed

‘‘yes’’ (e.g., occurrence of a certain amount of snowfall) events

and can be calculated as below:

TS5N
h
/(N

h
1N

m
1N

f
) , (4)

where Nh, Nm, and Nf are the numbers of hit, miss, and false

alarm pixels, respectively. Note that the number of correct

negative (e.g., success in simulating no snowfall occurrence) is

not included in the above equation. A forecast or model ‘‘yes’’

pixel was defined based on three thresholds for the increase in

SWE during a simulation period (DSWE), that is, when DSWE

exceeded 10, 20, and 30 kgm22, respectively, a pixel is assigned

with ‘‘yes’’ for corresponding thresholds, otherwise ‘‘no’’.

These thresholds were based on the range of the SNODAS

analysis over the Great Lakes. After the SNODAS analysis

was interpolated to the WRF model grid, ‘‘yes’’ or ‘‘no’’ was

2818 JOURNAL OF HYDROMETEOROLOGY VOLUME 21

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 09/17/21 01:45 PM UTC

https://coastwatch.glerl.noaa.gov/marobs/
https://coastwatch.glerl.noaa.gov/marobs/
https://www.natice.noaa.gov/products/great_lakes.html
https://www.natice.noaa.gov/products/great_lakes.html
https://coastwatch.glerl.noaa.gov/glsea/doc/


assigned to each pixel for the three intensity levels both in the

model results and the interpolated SNODAS analysis. The

number of hits Nh was obtained by counting pixels where

both the model results and interpolated SNODAS analysis

had ‘‘yes.’’ The number of misses Nm (false alarms Nf)

was calculated by counting pixels where the interpolated

SNODAS analysis had ‘‘yes’’ (‘‘no’’) but the model results

had ‘‘no’’ (‘‘yes’’).

3. Results and discussions

a. Lake-surface conditions
Figure 2 shows the water surface temperature and ice cover

at initial and end simulation times. At the initial time, the

control simulation (Figs. 2a,e,i) had similar water surface

temperature to the dynamic simulation (Figs. 2b,f,j) for all

three events. However, the control lacked the detailed spatial

representations, such as nearshore–offshore gradients in Lake

Michigan and cooling in Saginaw Bay which is located in the

southwest corner of Lake Huron (Figs. 2a,b). These detailed

features were captured within the dynamic simulation. The

contrast of binary and fractional ice covers in the control and

dynamic cases should be also noted in the January 2018 event

(Figs. 2i,j). Over the simulation periods, FVCOM-CICE repro-

duced the dynamic change of the lake-surface conditions in re-

sponse to exposure to the cold air mass. The modeled water

surface temperature and ice cover at the end times (Figs. 2c,g,k)

were in reasonable agreement with the analyses from GLSEA

andNIC (Figs. 2d,h,i). Furthermore, for all simulations, the final

lake-surface temperature was notably cooler than the initial

state. In the December 2017 and January 2018 events, the dy-

namic simulations capture notable development of ice cover on

LakeErie (Figs. 2h,l and 3). On the other hand, the control lake-

surface condition remained constant, missing the rapid ice de-

velopment. It is also notable that most of the ice areas in the

dynamic simulation were fractional in nature (i.e., less than

100%), while in the control case, ice cover was handled as a

binary condition (i.e., 0% or 100%). The rapid cooling of the

lake surfaces was clearly demonstrated by the time trends of

lake-wide mean temperatures (Fig. 4), where notable decreases

of lake-wide mean temperature were captured by the

FVCOM-CICE simulation results and were in agreement with

the analyses. Most notably, Lake Erie experienced the greatest

cooling among the lakes, with DTfvcom ranging from 20.288
to 21.788C (DTRTG ranging from 20.78 to 21.528C) during

the storm events. This can be attributed to Lake Erie being

the shallowest among the Great Lakes and therefore has the

lowest heat capacity. These rapid surface condition changes

demonstrate the shortfall of using a temporally static surface

boundary condition, which does not take into account the

cooling lake-surface temperatures leading to errors in lake-

surface temperature by the end of the simulation on the order

FIG. 2. Water surface temperature and lake ice cover for the three lake-effect snow events. From left to right, columns show (a),(e),(i)

the control case; (b),(f),(j) the dynamic case at the initial simulation times; (c),(g),(k) the dynamic case at the end simulation times;

(d),(h),(l) and analyses fromGLSEA andNIC on the end days of simulations. From top to bottom, rows show (a)–(d) the November 2014

event, (e)–(h) the December 2017 event, and (i)–(l) the January 2018 event.
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of 18C over many of the lakes. Solution convergence was

tested via additional iterations of the loosely coupled mod-

eling system. The net result with both lake-wide ice coverage

and water surface temperature was only minimal changes

from the first loosely coupled solution.

Figure 5 shows wind at 10m and air temperature at 2m

above the surface for the control and dynamic simulations.

Changes in wind were limited to minor circulation changes

associated with altered lake-effect band locations. For 2-m air

temperature, both the control (Figs. 5b,f,j) and dynamic

(Figs. 5c,g,k) solutions successfully handled the notable

cooling over the computational domain through the simu-

lation periods. For the November 2014 event, the dynamic

solution was cooler than the control over the lakes at the end

of simulation (Fig. 5d). This is an expected result, as the dynamic

simulation incorporated the cooling lake surface. In contrast, the

December 2017 and January 2018 events had the opposite result

(i.e., the control results had lower 2m air temperature over the

lakes at the end of simulation compared to the dynamic results).

The cooler air in the control results was most notable over ice

cover (Fig. 2) and had a strong influence on lake average

values. Recall the default behavior of the control simulation

is to assign lake ice coverage to 100% (no lead or fractional

open water) for grid points assigned to ice. This treatment

results in an overly cooled lake surface in the simulations

where newly forming ice occurs, as in reality, there is expo-

sure of water surface to the air due to fractional ice cover

and/or leads. In the dynamic simulations, some of the ex-

posure to open water is accounted for with the introduction

of fractional ice cover.

To verify the modeled surface meteorology, the surface air

temperature and wind speed from the case studies were

FIG. 3. Lake-wide ice coverage for each of the Great Lakes during (top) the December 2017 and (bottom) the January 2018 events.

There was no ice during the November 2014 event. Thick and thin blue lines denote the FVCOM-CICE simulation results after the first

and second iterations, respectively. Black lines show the analyses from NIC. On top of each panel, the change in ice coverage (%) during

each event for each lake is shown for the NIC analysis (DANIC) and the FVCOM simulation (DAfvcom).

FIG. 4. Lake-wide mean temperature for each of the Great Lakes. Blue dashed lines denote the control case; thick and thin solid blue

lines denote the FVCOM-CICE simulation results after the first and second iterations, respectively. Black lines show the analyses from

RTG. From top to bottom, the rows indicate the November 2014 event, the December 2017 event, and the January 2018 event. On top of

each panel, the temperature change during each event for each lake is shown for theRTG (DTRTG) and the FVCOMsimulation (DTfvcom).
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compared with the 15 coastal stations across the Great Lakes

from CMAN (Figs. S1–S5). The RMSEs and biases were re-

duced at more than half of these stations using the dynamic

configuration (Tables S1–S3). The improvements were most

notable in the January 2018 event, likely due to not only the

temporary evolving surface ice and water temperature condi-

tions simulated by FVCOM-CICE, but also the improved ice

treatment in the WRF (i.e., fractional ice).

b. Turbulent heat fluxes

Figure 6 shows the time series of lake-wide means of tur-

bulent sensible and latent heat fluxes (Hs and Hl). All the

events exhibited notable peaks in these heat fluxes during the

event periods, which were associated with the large tempera-

ture and humidity differences between the air and lake surface.

Overall, the Hs (red lines in Fig. 6) were dominant compared

with the Hl (blue lines in Fig. 6). The comparison with the

observations at the GLEN sites is also shown in Figs. 7 and 8 .

While comparisons to a very limited dataset like GLEN should

be interpreted with caution, it is useful using higher-order data

to offer insights to capabilities of the system in generating the

appropriate atmospheric adjustment for these strong forcing

scenarios.

For the November 2014 event, the difference in the lake-

wide average Hs and Hl was relatively small between the

control and dynamic results (the first row in Fig. 6), with dy-

namic being slightly lower. This is consistent with the lake-

surface cooling captured by the dynamic setup resulting in

decreased air–lake temperature differences, thereby reducing

turbulent heat fluxes. In comparison with the GLEN obser-

vations, the Hs simulation was improved at all the sites using

the dynamic configuration (Fig. 7). The Hl simulation had

mixed signals at these limited data points. Improvement was

notable at Spectacle Reef, but degradation in performance

occurred at Stannard Rock (Fig. 8).

For theDecember 2017 event, the lake-widemeanHs andHl

from the two simulations were nearly identical. Unlike the

November 2014 event, the cooling of lake surface was far less

pronounced (Fig. 4), as temperatures were much closer to 08C
with notable ice development (Fig. 3). The only exception was

Lake Huron, where Hs and Hl were notably higher in the dy-

namic results. During this event, Lake Huron was covered by

10%–20% of lake ice, while the other lakes were nearly ice-

free (Fig. 3). As noted earlier, the control setup tended to

produce a colder lake surface due to the binary treatment of ice

cover, which was improved in the dynamic representation us-

ing fractional ice cover. The net result was slightly higher Hs

and Hl across Lake Huron in the dynamic treatment. In gen-

eral, the RMSE values using GLEN observations were similar

between the control and dynamic simulations. However, near

FIG. 5. Air temperature at 2m from the surface (color) and wind vector at 10m from the surface. Columns from left to right: (a),(e),(i)

the control case at the initial time; (b),(f),(j) the last 24 h mean of the control case; (c),(g),(k) the last 24 h mean of the dynamic case; and

(d),(h),(l) difference between the control and dynamic case over the last 24 h. Rows from top to bottom: (a)–(d) the November 2014 event

(now missing), (e)–(h) the December 2017 event, and (i)–(l) the January 2018 event.
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the Straits of Mackinac, where notable ice cover was present,

the RMSE forHl was notably reduced at Spectacle Reef in the

dynamic outcome (Fig. 8).

For the January 2018 event, the difference between the two

simulations was the most prominent among the three cases.

Overall, the dynamic simulation produced higher Hs and Hl

than the control (Fig. 6). This was due to the notable area of

fractional (not full) ice cover on most of the lakes. The control

produced appreciably lower surface temperatures—especially

where full, nonfractional ice cover was prescribed. This

signal was more pronounced in the turbulent sensible heat

flux Hs, as the dynamic simulation fractional ice cover al-

lowed for a warmer lake surface (i.e., combination of ice and

water). A comparative increase in the turbulent latent heat

flux Hl is also noted in the dynamic simulation, except for

over Lake Superior. It was slightly counterintuitive that the

lake-wide mean Hs and Hl were smaller in the control case

where ice coverage did not increase than those in the dy-

namic case where ice coverage increased in time, in the light

of the conventional notion that growing ice cover on a lake

insulates the lake and reduces the turbulent heat flux across

the air and lake (Gerbush et al. 2008). This process certainly

occurred in the dynamic case, but apparently, the inclusion

of fractional ice cover had larger impacts on the experiment

results. The RMSEs for Hs and Hl were mostly decreased in the

dynamic case (Figs. 7 and 8), except for the turbulent sensible heat

fluxHs atWhite Shoal, where the dynamic case overestimated the

observed Hs value. The representation of fractional ice cover at

White Shoal was consistent with NIC: the dynamic case had ice

coverage of 90%–100% at the site, while NIC showed 90%–95%.

One possible explanation is that the footprint of the eddy covari-

ance measurement (which is often smaller than horizontal reso-

lutions in FVCOM-CICE and NIC) was dominated by ice cover

and therefore didnot catch the signal from leads (i.e., small fraction

of open water). In the control case, by definition, ice cover was

assumed to be 100% (full).

c. Snow water equivalent
Increase of snowwater equivalent (DSWE) during each LES

event was reasonably captured by the modeling system in

comparison with the SNODAS analysis (Figs. 9a–i). As ex-

pected, the largest accumulation of SWEwas concentrated in

the three downwind areas of the lakes defined in Fig. 1. At

first glance, the spatial patterns of DSWE were similar be-

tween the control and dynamic results (i.e., the second and

third rows in Fig. 9). However, the difference plots (Figs. 9j–

l) show evident changes in the downwind areas. The spatial

patterns of differences were a mixture of positive and neg-

ative changes, and so were the MAE differences (DMAE,

Figs. 9m–o). Overall, the differences (Figs. 9j–l) appear to

reflect the changes in the turbulent heat fluxes Hs and Hl

from the lakes (Fig. 6). For example, in the November 2014

event, the dynamic simulation produced less DSWE (i.e.,

more blue areas in Fig. 9j) downwind of most of the lakes

compared to the control as a result of the reduced Hs and Hl

from the lakes. Similarly, in the January 2018 event, the

dynamic results generally higher that the control (positive

DSWE—i.e., more red areas in Fig. 9l) as a result of the in-

creased Hs and Hl from the lakes.

At a subbasin scale, there were a few notable improve-

ments. For example, in the November 2014 event, the

overspread of DSWE in the south of Lake Erie within the

control outcomes were reduced within the dynamic simu-

lation (blue area in Fig. 9m). Notable reduction of MAE

was also seen downwind of southern Lake Michigan in the

December 2017 event (Fig. 9n), and again downwind of

Lake Erie in the January 2018 event (Fig. 9o). On the other

hand, there are issues that neither of the model experiments

were able to address, such as the deep overspread of DSWE

across the inland regions of lower Michigan in the December

2017 event (Figs. 9k,n) and the overestimate of DSWE down-

wind of northern Lake Michigan (Figs. 9l,o) in the January

2018 event.

FIG. 6. Lake-wide averages of the turbulent sensible (red lines) and latent (blue lines) heat fluxes for the four events. From top to

bottom, the rows show the November 2014 event, the December 2017 event, and the January 2018 event. Dashed line denotes the control

case and solid line denotes the dynamic case.
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The threat scores across the three downwind regions are

shown in Table 2. The most evident improvement was seen

with the January 2018 event, where the score was notably im-

proved downwind of Lake Erie and LakeMichigan. Across the

Upper Peninsula (UP) of Michigan, the score remained almost

the same for this event. For the November 2014 andDecember

2017 events, the scores were a mixture of slight improvements,

degradation, and no change. On average, the score was im-

proved for all the thresholds in the dynamic results. The largest

improvement in the January 2018 event was likely associated

with the notable coverage of lake ice during this event and its

improved treatment in the dynamic setup (i.e., fractional ice

coverage).

d. Operational applicability
The verification presented in the previous subsections dem-

onstrates that the one-way linkage between FVCOM-CICE

and WRF resulted in improved simulation performance of

surface meteorology and DSWE during the selected LES

events. The realistic representation and frequent updates

of lake ice coverage and water surface temperature clearly

propagated into the improved simulations of the turbulent

heat fluxes and snow water equivalent in the downwind areas.

LES events generally involve notable change in the lake-

surface conditions (i.e., temperature, ice cover) over a few-day

period. Thus, the advantage of the one-way linkage was well

illustrated in these case studies. Even in other seasons, benefits

of the one-way linkage can be expected. For example, coastal

upwelling is a typical nearshore event in the Great Lakes

during summer [e.g., Lake Erie (Rowe et al. 2019) and Lake

Michigan (Plattner et al. 2006)] and is associated with a

subdaily change in lake-surface temperature and sharp

nearshore–offshore temperature gradient. Such features

are often missed in the daily 1/48 resolution RTG product

but can be captured by FVCOM-CICE.

The one-way linkage procedure was iterated over for

multiple times in a preliminary experiment. From those ex-

periments, it was found that the model setup results mostly

FIG. 7. Comparison of the modeled and observed turbulent sensible heat fluxHs during the three events. The observations are from the

GLEN sites of Stannard Rock (Lake Superior), Granite Island (Lake Superior),White Shoal (LakeMichigan), and Spectacle Reef (Lake

Huron). The model results are taken from the closest grid points to the observation sites. Blue and red dots indicate the results from the

control and dynamic cases, respectively. RMSE values (Wm22) for the control and dynamic cases (RRTG and RDYN) are shown on the

lower right of each panel.
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converged on a solution after one back-and-forth between

the FVCOM-CICE and WRF (also see the discussion in

section 3a). This fact is beneficial for the operational envi-

ronment as the one-way linkage essentially requires no or

little increase in computational time, as compared to pre-

forming multiple iterations, to obtain a converged solution.

The improvements in the model results, with only a minor

additional preprocessing resource demand, supports the op-

erational applicability of this one-way linkage system between

the FVCOM-CICE and WRF. As part of the research-to-

operation (R2O) transitions of GLOFS andHRRR, part of the

system was demonstrated on a real-time basis (two cycles per

day) for the winter of 2019/20 utilizing the existing experi-

mental GLOFS (based on FVCOM-CICE) and experimental

HRRR (based on WRF) for future implementation in opera-

tions at NOAA’s NOS and NWS, respectively. Leveraging

each other’s products utilizing the existing data dissemination

channels at NOAA would be a logical pathway to co-improve

forecast products.

4. Summary and conclusions
As a milestone to future implementations in opera-

tional GLOFS and HRRR, this study tested and verified

the improvements in relation to LES forecasts via a one-way

coupling between the hydrodynamic–icemodel (FVCOM-CICE)

and the atmospheric model (WRF). The realistic representation

and frequent updates of lake-surface cooling and fractional ice

development during the three LES events was achieved by

feeding the FVCOM-CICE simulated lake-surface condi-

tions to WRF with a regional configuration of the HRRR,

resulting in improved simulations of surface meteorology,

turbulent heat fluxes over the lakes, and snow water equiva-

lent downwind of the lakes. The one-way coupling essentially

required one iteration (i.e., data back-and-forth) of the WRF

and FVCOM-CICE system to reach a converged solution. Thus,

the one-way linkage is a practical approach in an operational en-

vironment at NOAA, as it requires little increase in computational

resource yet can result in improved forecasts of weather and lake

conditions.

Based on the results in this study, part of the systememployed in

this study was tested during the winter of 2019/20 at NOAA’s

Hydrometeorological Testbed on a real-time basis for the experi-

mental versions of GLOFS and HRRR (or HRRRX) for future

implementation in operations to provide operational forecasts at

NOAA’s NOS and NWS, respectively. This study supports that

leveraging each other’s data streams from GLOFS and HRRR

FIG. 8. As in Fig. 7, but for the turbulent latent heat flux Hl.
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FIG. 9. (a)–(i) Increase of SWE during (left) the November 2014 event, (center) the December 2017 event, (right) and the January 2018

event from SNODAS, the control case, and the dynamic case. (j)–(l) Difference of DSWE between the control and dynamic case. (m)–(o)

Change inmean absolute error from the control and dynamic case where negative and positive values generally indicate improvement and

degradation, respectively.
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and utilizing the existing data dissemination channels would be a

logical pathway to co-improve weather, lake, and ice forecasts.
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